Selasa, 22 April 2014

CONTOH SOAL DAN PENJELASAN DARI SISTEM PERTIDAKSAMAAN LINEAR


halloooo,,,ada yang mengalami kesulitan dalam memahami soal sistem pertidaksamaan linear,,,berikut ini beberapa contoh soal dan penjelasannya yang saya ambil dari beberapa sumber,,,,semoga bermanfaat ^^


Perhatikan bentuk bentuk berikut :
x + y < 3
x + 2y ≤ 6, atau
3x – 2y ≥ 1
Bentuk tersebut diatas dikenal dengan istilah pertidaksamaan linear, dengan pangkat peubahnya paling tinggi = 1 (peubah : x dan y). gabungan dua atau lebih dari pertidaksaaman linear tersebut akan membentuk suatu sistem pertidaksamaan linear.
Contoh :
Gambarlah pada bidang cartesius, himpunan penyelesaian dari pertidaksamaan x + 2y ≤ 6 untuk x dan y ϵ R.
Pembahasan :
Pertama kita gambar garis x + 2y =6. Untuk x = 0 maka akan diperoleh y = 3 sehingga diperoleh titik (0,3). Untuk y = 0 maka nilai x = 6 sehingga diperoleh titik (6,0). Lukis pada bidang kartesius dengan menghubungkan titik (0,3) dan (6,0).
http://pintardenganmatematika.files.wordpress.com/2012/02/soal-01.png?w=490





Garis tersebut membagi bidang cartesius menjadi dua bagian, masing masing merupakan daerah penyelesaian  x + 2y < 6 dan x + 2y > 6. Untuk menentukan belahan bidang yang merupakan penyelesaian dari soal diatas, ambil sembarang titik untuk di uji. Misalnya kita ambil titik (0,0)sebagai titik uji sehingga akan menjadi :
0 + 2. (0) < 6
0 + 0 < 6
0 < 6 (benar)
Karena pernyataan itu benar maka titik (0,0) adalah sebuah daerah penyelesaian x + 2y < 6. Dengan demikian himpunan penyelesaian dari pertidaksamaan x + 2y ≤ 6 adalah himpunan titik pada garis x + 2y =6 dan pada belahan yang memuat titik (0,0) sehingga himpunan penyelesaiannya diberikan pada gambar diatasyang merupakan daerah yang bersih (tidak diarsir).













2. Pertidaksamaan Linear
Pertidaksamaan linear merupakan kalimat terbuka dalam matematika yang terdiri dari variabel berderajat satu dan dihubungkan dengan tanda pertidaksamaan. Bentuk umum dari pertidaksamaan linear dua variabel yaitu :
ax+by>c
ax+by<c
ax+by≥c
ax+by≤c
dengan a koefisien untuk x, b koefisien dari y dan c konstanta dimana a,b,c anggota bilangan riil dan a≠0,b≠0 .
Suatu penyelesaian dari pertidaksamaan linear biasanya digambarkan dengan grafik, adapun langkah-langkah dalam menggambar grafik pertidaksamaan linear yaitu sebagai berikut :
1. Ubah tanda ketidaksamaan menjadi persamaan
2. Tentukan titik potong koordinat kartesius dengan sumbu x dan sumbu y.
3. Gunakan titik uji untuk menentukan daerah penyelesaian.
4. Gambarkan grafiknya dan beri arsiran pada daerah penyelesaiannya.
Untuk lebih memahami tentang pertidaksamaan perhatikan beberapa contoh berikut :
contoh 1.
Contoh 1 Pertidaksamaan Linear Dua Variabel
contoh 2.
Contoh 2 Pertidaksamaan Linear Dua Variabel
contoh 3.
Gambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk xanggota bilangan real.
–x + 8y ≤ 80
2x – 4y ≤ 5
2x + y ≥ 12
2x – y ≥ 4
x ≥ 0, y ≥ 0
Penyelesaian :
Ubah pertidaksamaan menjadi bentuk persamaan dan gambarkan pada bidang koordinat
titik-titik-koordinat

tabel-titik-titik-koordinat

grafik-persamaan-linear
Selanjutnya uji titiknya untuk menentukan daerah penyelesaian. Dapat dengan cara substitusi atau dengan garis bilangan. Pada contoh kali ini menggunakan substitusi misalkan kita pilih titik (0,12)
uji-titik
Setelah titk tersebut disubstitusi menghasilkan pernyataan yang salah, sehingga daerah penyelesaiannya berlawanan dengan daerah yang mengandung titik (0,12).
daerah-penyelesaian
Dengan cara yang sama untuk persamaan yang lain telah kita peroleh grafik sebagai berikut.
Daerah penyelesaian dari pertidaksamaan tersebut adalah daerah yang terkena seluruh arsiran, yaitu :
daerah-penyelesaian-2
Semoga artikel ini dapat bermanfaat, selain materi persamaan dan pertidaksamaan linear ini sebelumnya telah saya berikan materi pertidaksamaan kuadrat. Selamat Belajar dan Semoga Sukses.

Tidak ada komentar:

Posting Komentar